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The consequence of the hypothesis that the N* lies on a Regge trajectory for the low-energy pion-nucleon 
phase shifts in the / = f , r = f state is investigated using the Khuri representation. 

THE consequence of the hypothesis of Regge poles 
on the low-energy behavior of a scattering ampli

tude has recently been pointed out by Khuri.1 The 
Khuri representation has subsequently been used by 
Khuri and Udgaonkar2 to calculate the pion-nucleon 
phase shifts in the T~ J, P% state on the basis of a model 
in which the scattering process proceeds through a single 
Regge-pole nucleon intermediate state in the direct 
channel. The case of neutron-proton scattering proceed
ing via a Regge-pole deuteron has been discussed else
where.3 The purpose of this note is to extend the method 
of Ref. 2 to calculate the pion-nucleon phase shifts in 
the Z,= f, Pf state. We consider the scattering process 
to proceed via a N* isobar [^pion-nucleon (3,3) reso-
nance]] intermediate state and treat the isobar as a 
Regge particle with a variable spin. 

Using the Khuri representation, the contribution of 
the iV* Regge pole to the pion-nucleon T = | , P§ partial-
wave amplitude can be calculated in a straightforward 
manner. The result is4 

a-(*,W0=-
1 P(W) 

X[exp(a-f)a+exp(a-§)? 2 ] . (1) 

In (1), a(W) is the N* Regge trajectory and P(W) the 
corresponding residuum. W is the total cm. energy. £1 
and £2 are given by 

fc=ln(n—+ [KH 
fc = ln 

W2-m2-2 K W2-m2-2 \ 2 -1*1 

-5—'HI . ( 2 ) 
2k2 L\ 2k2 

In (2), k is the c. m. momentum and m the nucleon 

1 N. N. Khuri, Phys. Rev. 130, 429 (1963). Knurls formula was 
independently obtained by C. E. Jones, University of California 
Lawrence Radiation Laboratory Report UCRL-10700 (unpub
lished) . 

2 N. N. Khuri and B. M. Udgaonkar, Phys. Rev. Letters 10,172 
(1963). 

8 S. K. Bose and M. DerSarkissian, Nuovo Cimento (to be 
published). 

4 We are following the notation of V. Singh [Phys. Rev. 129, 
1889 (1963)]. The odd /-parity amplitude aJ (J,W) interpolates 
to 0_(f,PF). We have assumed that the former amplitude has no 
other singularity in the complex / plane except for a pole cor
responding to N*. 

mass. The pion mass has been set equal to unity. 
Following Khuri and Udgaonkar,2 we next approximate 
Eq. (1) based on considerations of the threshold be
havior of p(k2). The latter is given by 

/3(&2)~[£2>-* as •0; a0=a(PT)l*-o, (3) 

while the terms involving the exponential behave as 

exp(a~|)?i~[i^2]-^o-J) 
exp(a-J)^2^[^2 / (2m-l)]-^o-i) j as £ 2 ->0, (4) 

so that the product /3exp(a—-|)£i will be slowly varying 
and essentially real near threshold. We approximate it 
by a real constant C for the entire energy range under 
consideration 

/Jexp(a-i)fc=C. (5) 

We next consider the form of the iV* trajectory a(W). 
The real part of a(W) may be written in the form 

Rea(W) = %+e(W-tn*). (6) 

In (6) tri* denotes the mass of the N* isobar and e the 
slope of the N* trajectory. For the imaginary part of 
a(W) we assume the form 

Ima(W) = Ci[W- (m+1)]». (7) 

The form (7) for Ima(W) satisfies the requirement that 
a(W) be purely real below threshold. It is also consistent 
with the requirement of the correct threshold behavior5 

of Ima(W), viz., 

Ima~^2ao+1, k2->0. (8) 

The constant Ci, occurring in (7), may be expressed in 
terms of the width V of the (3,3) resonance using the 
relation 

(9) T = — [ " i n i a W / Rea(TF)] 

From (6), (7), and (9), we obtain for the trajectory 

a(W) = i+e(W-m*)+^iTe\ — — . (10) 
Lmr— (m+l)J 

The partial-wave amplitude a-{%,W) finally becomes, 

6 A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962). 

B789 



B790 S . K . B O S E A N D S . N . B I S W A S 

from (1) and (10), 

/Q x C fexpC-^+expC-^expCfe-^CaW-J)]] 

2e{ /W-(m+l)\S f 
JF--f»*+Jtr( 

L W*-(ra+l)/ J 

If we now specify the values of the parameters w* and 
T from experiment, i.e., m*=8.91, r=0.72, and estimate 
€ from the observed location of the next higher reso
nance, viz., the pion-nucleon resonance with / = § + at6 

1920 MeV (e turns out to be 0.41), the trajectory a (W) 
then is completely fixed. The (3,3) phase shift which is 
related to the partial-wave amplitude through the 

!60f-

20 40 60 80 100 120 140 160 180 200 220 

LAB KINETIC ENERGY OF PION IN MeV 

^ FIG. 1. Plot of the dzz phase shifts in degrees as a function of the 
kinetic energy in MeV of the incident pion in the laboratory. 
Experimental points are denoted by circles. 

6 We have assumed the spin of TN resonance at 1920 MeV to be 
i+. We understand that this point is not yet completely settled, 
although the presence of a large cos60 term in the pion angular 
distribution strongly favors this assignment. This assignment of 
spin i+ has also been suggested by Glashow and Rosenfeld [S. L. 
Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10,192 (1963)]. 

relation 
a-(lW)=:(em"/k)smdZ3 (12) 

can now be calculated from (11). It is not necessary to 
known the value of the over-all multiplicative constant 
C appearing in (11) as the expression for phase shift 
dzz=tm~1[Ima-(W)/Rea.-(W)2 is independent of the 
latter. The situation here is quite different from that in 
Ref. 2, where it was essential to determine the constant 
C (which was done by an extrapolation procedure). The 
difference between our case and that of Ref. 2 arises be
cause, in the latter, the imaginary part of the (nucleon) 
trajectory was explicitly neglected. However, once the 
phase shifts are determined the amplitude a_(f,W0 is 
completely fixed and the constant C can then be deter
mined by comparing the amplitude a_(f ,W) calculated 
at a fixed energy using (12), with that given by (11). 
This can, in particular, be done at the resonance energy 
W=m*. The value of C, thus determined, is Ccz.0.3. 

The (3,3) phase shifts calculated from (10) are plotted 
in Fig. 1. As can be seen from the figure, our result for 
the energy dependence of S33 is in good agreement with 
the experimental data. 

We are thankful to B. M. Udgaonkar for useful 
correspondence, to S. C. Frautschi for a communication 
regarding the form of the imaginary part of the (3,3) 
trajectory, and to A. S. Anikhindi for help with the 
numerical work. 

Note added in proof, A closely analogous approach to 
the present problem has been made by DerSarkissian 
[M. DerSarkissian. Louisiana State University, 1963 
(unpublished)]. 


